A two-step approach for variable selection in linear regression with measurement error
نویسندگان
چکیده
منابع مشابه
Some Two-Step Procedures for Variable Selection in High-Dimensional Linear Regression
We study the problem of high-dimensional variable selection via some two-step procedures. First we show that given some good initial estimator which is l∞-consistent but not necessarily variable selection consistent, we can apply the nonnegative Garrote, adaptive Lasso or hard-thresholding procedure to obtain a final estimator that is both estimation and variable selection consistent. Unlike th...
متن کاملA New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملVariable Selection in Measurement Error Models.
Measurement error data or errors-in-variable data are often collected in many studies. Natural criterion functions are often unavailable for general functional measurement error models due to the lack of information on the distribution of the unobservable covariates. Typically, the parameter estimation is via solving estimating equations. In addition, the construction of such estimating equatio...
متن کاملVariable Selection for Partially Linear Models with Measurement Errors.
This article focuses on variable selection for partially linear models when the covariates are measured with additive errors. We propose two classes of variable selection procedures, penalized least squares and penalized quantile regression, using the nonconvex penalized principle. The first procedure corrects the bias in the loss function caused by the measurement error by applying the so-call...
متن کاملVariable selection in linear regression through adaptive penalty selection
Model selection procedures often use a fixed penalty, such as Mallows’ Cp, to avoid choosing a model which fits a particular data set extremely well. These procedures are often devised to give an unbiased risk estimate when a particular chosen model is used to predict future responses. As a correction for not including the variability induced in model selection, generalized degrees of freedom i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2019
ISSN: 2383-4757
DOI: 10.29220/csam.2019.26.1.047